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Abstract

We consider a bilinear signal process driven by a, Gauss-Markov
process which is observed in additive , white , gaussian noise. An exact
stochastic differential equation for the least squares filter is derived
when the signal process satisfies a nilpotency condition . It is shown
that the filter is also bilinear and moreover that it satisfies an
analogous nilpotency condition. Finally , an example is presented and
ways of reducing filter dimensionality discussed .
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OVI’ ThIAL FILTERS FOR N J LP~ FENT ASSC )CIATE-A L( EB RAI C BILi NEAR SYSTEM S

SH 1R I SH D. CHD~TE and JANES TINC -HO LO
Department of Nath.~mat Ics , Universit y of ~1ary la nd B a i t  jinore C o u n t y
Baltimore , Nary la nd

1. INTRODUCTION

Recently,  optimal estimation and detection of signal processes
generated by bilinear dynamical systems has been t h e  subject  of invest i -
gation in a number of articles , e.g. [1), [2) and [3]. Problems of this
type arise in such practical applications as inertial navigation ,
satellite attitude control and angle modulation .

We consider least-squares filtering of stochastic processes gen-
crated by the  so called nil potent  bilinear dynamical s~’stern d r i v e n  by a
Causs-liarkov process observed in white gaussian noise enviroimient. In
v i e w  of the work by Fliess [4] and Sussman [5], there is strong r eason to
suspect that the above class of systems can ap p r o x i m at e  a niuch wider
class of nonlinear systems . The existence of finite dimensional , re-
curs ive  f i l t e r s  for such processes was e s t a b l i s h e d  in  [3) un der  a some-
what  weaker  L i e -a l geb rai c  ni l potenc y c o n d i t i o n .  In t h e  p i e s e n t  pa per ,
exp l i c i t  s t o c ha s ti c  d i f f e r e n t i a l  equa t ions  ~e a l i z in g  such filters are
derived by “closing ” t he i n f i n i t e  d im e n s i o n a l  n o n l i n e a r  f i l t e r i n g  equa-
tions of J(ushner [63. It is found that t he  f i l t e r  s t r u c t u r e  is not only
bilinear but it also inherits the nil poteiscy p r op er ty  from the ori g i n a l
sys tern .

The next section presents the problem forimil ;~tion. The third sec-
tion contains the derivation of filter equations. The final 5( (’t~~Ofl

concludes with an examp le and co~putational conside rat ions.

2. l’ROfl EM STATENENT

We first delineate the class of nonlinear f i l t e  in g  ~~ c h l c m s
addressed to in t h i s  paper.

We are c i ~-en I lie st  ~inda  rd l i n e a r  It  ~ ,i~ode Is for  I he i ~;ni I

{ ~ (t)} 
~ ~ 

and t h e  o b s e iv a t  i c ~n p r oc e r S  ~~z ( t )}  
~ ~ 

rsject iVI! ] )’,

as follows .

The signal model :

d~ (t) F(tfl(t)dt + Q2(t)dw(t) , t ~ 0 ( .1)

The observation model :

dz(t) H(t)~~(t)dt +R~~,dV(t), t ~ 0 (7.2)

where w ( ) and v ( . ) a ic st ;inda id N and 1’ di r n  ~ I on;l I i wk p 1 ,dent
Wiener processes respectivel y, ~ t)1~~ , ~ t ) i R1’, F (0) is a zero  mi;~n

gat lssi  an random vec tor  iride pende i i t  of w(.) and v (.) j i  i.r~~ . .e~; ~nd F(.),

H ( . )  , R 2 ( . )  a re  t i m e - d e p en d e n t  m a t r i c e s  of ~ p~i i up i  i;~t c  dj o nn s i o n s

w i t h  Q(t) , R ( t )  p o s i t iv e  d e f i n i t e  and c o n t inu ~~~~l y d i f f e r e n t i ab le  for
a l l  t.

l~ow consider a process tx(t)} 
~~~ 

genc~rated by a b ilinear



~1’t dynamical system of tie fol lowing form :

dx( t) = (A + E Bj~ i ( t ) ) x(t ) d t , x ( t )E~j~ , t � 0 (2.3)

where x(O) is a gaussian random vector i ndependent of ~(O) ,

~ 
� o, fv(t)~ t � 0

We are in teres ted in an exact, finite dimensiona l system of sto-
chastic d i f f e r en t i a l  equations for the least squares es t imator

E [x ( t ) I z t ] ~~~ (t~ t) of x( t ) . It is well-known (see e.g.  [6]) that

this , in general , is not possible. In this paper , we in t end  to derive
such a f i l t e r  and study its character is t ics  wi th  the proviso that the

matrices A and {B1J ~~~ 
in (2.3) sa t i s fy  a we l l -know n al gebrai c

property called nil potency .

Def in i t ion  1:

An associative algebra e.A9 of matr ices  is said to be nhl yotent
(of order K) if there exists  a posit ive in teger  K such that  the (mat r ix )
product of any K or more ma t r i ce s  in  eAø vanish es.

Assum~ption_2:

The associative al gebra G4G generated by the set of matrices

,N; k=O , l ,. . .J 
is ni l potent (of order K , say) where

Ad~~(B~ ) ~ B~

and

Ad~~(B~) ~ [A , Ad~~~
1(B~ ))  ~ A .A d~~~’(B~) - Ad

~~
’(B

i
)1A

for k = 1,2 , . . .

Remark :

Assumption 2 is stronger than the Lie-al gebraic nil potency i~ssuiii p-
tion made in [3).

3. THE STRUCTU RE OP THE NONLINEAR FlI ;J’ER

The filtering problem posed in the last section , was shown to be
amenable to solution in [31. in the main theorem of this paper that
fol low s shor t ly ,  we exp l i c i t ly exhibi t  the s t ruc tu re  of the n o n l i n e a r
f i l t e r  and stud’y i ts  charac te r i s t i c s .  We begin with some l emmas.

Lem ma_3:

The input-output map realized by the system (2.3) s a t i s f y i ng
Assumption 2 an al so be realized by a bilinear system which is a
“direct sum~ of (a f i n i t e  number of)  f i n i t e  dimensional systems of the
fol lowing form

—k -k N ....k —kdx (t )  (A + Z B ~ ( t ) )  x (t )d t , t ~ 0 (3.1)
i = l i I

- 2 -
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where ,

A~ O ; - — - - - - -

—k 0~~~A~ 
‘

~~~~~~ I
A = I S. I (3.2)

I 
‘ I

I S
I 

•‘0

~~~~~~~~~~~~~~~
0 A Mk

wi th  A~~~, i=1, ... , M.~ being J. X J. Jordan blocks , and

O 0 — — -  - - 0

0
\

B~~~ O ; — - 0
B = (3.3)I ‘SI s.~

0 — 0

wi th  B1
k

~ , 1=1, . ..  ,N; j =l , . .  . ,M.~-l being J~ X 
~~+1 mima t r i c e s.

Hence , the associative algebra [Ad ~ ~~~) Ik = o , l , ; i~~l , ,N~ AA
is also nil potent of the same order K.

Proof:

The proo f follows closely the ideas in the proofs of theorems 4
and 6 of Brockett [7] and hence is kept brief.

Using the t r a n s f o r m a t i o n  z( t) = e~~
t x (t ) a nd app ly ing the Peano-

Baker formula , we f ind  that  the V o lt e r r a  ser ies  so lu tion  to (2.3) is
given by

x ( t )  = [eAt 
+ ~

t
eA(t  -

t a  N
+ f  I 1

eA~~ 
_ a

1)( ~ ~~~~~~~~~~~~~~ 
-u2)

0 0

( E B . ~~.(a2))e”°2da1do 2 + 3 x(0) . (3.4)

It now follows from the Baker-Camnpbell-Ilausdorff formula together with
Assumption 2 that  a l l  the terms in (3.4) beyond the first K terms will
vanish .

Now , let the Jordan forum of A be given by diag [A 1, A 2 , . . . , A 5’}

where A1 is , say , J~ X 3. . Let K1 
‘

~~ k~ l 
3k ’ i1, . .  . , s w i t h

L - 3 -  
_ _ _ _ _ _ _ _
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K
1 ~ 0, and de f ine  y 1 

~ [x 
~~~~~~~~~~~~~~~ 

x 1T 
, 1=1 , .. .  ,s . Recall thatKj +l

e
At 

consists of J.X 3 blocks , i,k l ,.. . ,s which can be written as
s A~t ~. k

~~~
= 

C1e D , for some J~ X matr ices  C
1 

and J
1 

X n a t r i ce s  D~ .

With these remarks in mind , it is not difficult to see tha t  the r th order

term , 1 � r < K , in the Volterra series (3.4) , for the subset yt (cr0) of

components of x(o0) ,  i=l,.. . ,s, consists of groups of terms of the form

a1 °r_ 1N A 1
(a0-a1) A2(a1-a2) A a  

kf f ... f E Cle D1
e D2. . . Ore y (0)

0 0  0 r

.~~~ ~~~~~~~~~~1l  I

But each group of this type is realizable by a system of the type claimed

in the lemma with A and 

~~ 
•
~~~~~ 

as in (3.2), (3.3) (see theorem 4 of

[7) for details). The final assertion regarding nilpotency is obvious if
we note that ~ is upper triangular while ‘L , i=l,.. . ,N are strictly

upper triangular.

Lemma 4:

• Consider the signal and observation models of (2.1) and (2.2)
respectively. Define a (vector) process .[y(t) } 

~ ~ ~ 
by

N
dy( t )  = Dy( t)d t + Z E~~1(t)y(t)1=1

where D, (Ej 
~~~ 

are matrices of appropriate dimension ,

y(O) is independent of ~(0) , w(.) and v(.) processes. (3.5)

Th en ~(tlt) ~ E[y(t)/z
t] satisfies the following stochastic different ial

equation :
N

d~ (tI t) = D~I(tlt)dt + ~ E . .Etk~(t)y(t)]dt
j=1 1

+ {E
t
[y(t)~

T
(t) - ~~( t ( t) ~

T (t~ t )3 HT (t )R l (t ) dV ( t )

‘
~(0J0) = E[y(0)] (3.6)

where ,
• Et [.]  ~ E [ . I z t ] ~ E [ . I  (z(.r ) I 0~~ m t) ]

d~ (t) = dz( t )  - }i( t )t ( t lt ) d t

- 4 -



Proof:
App ly the Kushner non l inear  f i l t e r i n g  equa tI ons  [6] to the si gna l

pr oces s (yT(.),~T(.))T with z(’) as the observation proi~ess.

Lemma 5:

Let x = (x0, x1 ... ,x ) T be a gaussian random vector with mean

vector in = (m0,m1,.. . ,m )T and covariance matrix P [P
1J
]~~ J =

We then have the following relation:

n n n n
E[l r x )=  ~(m 0E[~~~

r x
1) + L P 04E[7T x

1
), n > l

1=0 1=1 J=l -‘ 1=2

I i#j

+ P01 , n 1. (3.7)

Proof:  See e.g. [8].

We are now ready to state and prove the m a in  theorem of this paper.

Theorem 6:

Consider the signal process (~x( t) ,~~(t)J t~~O evolving as in  ( 2 . 3 )

and (2.1) and the observation process &(t)) 
~�o 

as in (2.2). Assume

that (2.3) sa t i s f i e s  Assumption 2. Then the least squares f i l t e r e d
estimate ~ (tIt) can be obtained via the following finite dimensional
system of bilinear stochastic differential equations with suitable initial
conditions :

d~~tIt) = (A*(t)dt + ~ Bj *uj (t~t)dt  + E Cj
*d,Lj(t)) S

~*(tlt)dt
1=] . 1=1

‘
~(tIt) = L~~(tIt) , t ~ 0 (3.8)

where ‘
~(t~t), t 

� 0 is given by the s tandard  K alman-Pucy f i l t e r  [9) ,
A~ ( .)  is a d e t e r m i n i s t i c  m a t r i x  t ime f u n c t i o n . L, (B1 ,c.kJ • l are

constant matrices , and

T ~ 1
~ [,~1(t) ~i2 (t)....  1t (t) ) 

~ I HT (•O RCt )dv(~ )
N o

is the mod i f ied i n n o v a t i o n s  process.

Furthermore , the associative algebra generated by the following
set of matrices ,

~

is n i l potent of order K .

Proof:

From Lemma 3 , it is clear that we may take - without loss of
generality - (2.3) to be a stationary bili ne ar system i n wh i ch the ma t r i ce s

A and are of the special form stipul ated in (3.2) and (3 .3 )

respectively. Furthermore , we shall assume for ease of expos ft ion , that

-- •~~~~~~~~~~~~~~~~~~~ ---~~~~~~~~•-- ~~~ ~~~~~-- - -~~~~ -- .~~ -- •~~•- - • - •



F1 
~~~~~~~~~ 

-- •~~~

A = dl ag(a 1, a2,... ,aM); consequentl y ~k ~ 
[bk

t’
~~J 

is such that

(0 , j/i+1
bk ~‘ k , k=l , . . , N and x 1(O) = 0 a . s .  for  i < H .  For ,

(~ 2 , J = i + l

• it would become apparent  in the sequel , the proof for time general case
would involve little more than additional notationa l ct~~pJexity.

We now apply Lemma 4 to (2.3) wi th  the above ment ioned  spec i a l i~~a t f o n.
• With  the hel p of Lemma 5, the resulting differential equation analogous

• to (3.6) can be w r i t t e n  in the following form:

N N
d~( t I t )  = (A + Z B.t.(tIt))~~(tIt)dt + :~: B ~~ (tIt)dt

j=l ~ .1 j~ l
1’ — l

+ fx ’(t l t ) , x 2
(t l t ) , .  . ,xN ( t j t ) ) H T ( t ) R  ( t ) dv ( t )  (3.9)

where the “au g m e n t i n g  states” appearing i n (2. 17) ~3I -~ d e f i m i e d  a s

x~ ( .)  ~ [x ~~( .) ,  x~~( .) , .  . . ,~~ ( . ) )  , j = l , 2 ,. .

- 

N 
• 

H-q a0 ff~ 
~M-q-l 

a
qfr

(ar
_a

rfl)y f f  f  P, (tT~,o )e0 0  0 r
iii ,.. ,m. -=1 r~ l r
I

M - q — 1  in .in a a a (o . —o . ) ~ i l
b r .e 11 ~~~~~ (0) ( •iJ- C qI-i I ~ i-i m~ i-i .b

) q I-r 
~=o q

q 0 ilr

.,
~~ 

(a.÷i
)da , q < M

m .+l

0, q=M (3.10)

(Note: In the general case x ‘
~

(o o) would be a vector of a (1cuu ~m)s~ on
consistent with the qth J0r~ afl~b~ock).

and , 
P1~~~

(t~a)~ i ,j=l ,. . . ,N ; 0 a ~ t

is the 1,3 th element of the conditiona l covariance matrix

A A T
P(t,a) = E[(~ (t) - ~(t)t))(Ua) 

- 

~(aIt )) ) (3.11)

Also recall [10] that P(t,a) ,  a < t satisfies the fol lowing di ffer~.ntial

equation

~ P ( t ,a) -l
= [F(t) - P(t)H

T
(t)R (t)H(t) )p(t ,~ ) . (3.1 2)

Now , if  we d i f f e r e n t ia t e  the augmenting state vec to r
T T

x(.) ~ [x (.) x( .) ,  . . . x~.)1 €IRMN , (3 .13)

- 6 -
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then utilIzing (3.12), we find that N
d
1
x(t) = ci

1
(t)

1
x(t)dt + ~~(t)x(t)dt + E y

~ 
1
x(t)E,.(t)dt (3.14)

where a
1( .)  , ~1( .)  , 

~ 
are del ermni ned by the prohi .me p:II : n i m t  trs

and the error covariance p(.), the (M x N) blocks of 
~ 

( .)  and f~ 
(.) are

upper triangular and fv~} ~ l are block d i a go n al  mnal  r i c e s  w i t h  idc~nt ical

strictly upper triangular blocks given by

0 0 bt 0 0

I ~ 2 
a hi OCk of y (3. 15)

“ ‘ 1  1

-.. b~ 0
I S
I ‘S 0

‘S• 0. - - - - - - - - . 0 0

Now we may again apply Lemmas 4 and 5 to (3.14), and get

d~~ (t~ t) = (a1(t) + ~~~~~ ~ .(tft))
1
~ (t(t)dt +

N 
1= 

A A T -l

+ ~ vJ ~~~(tJt)dt + [1x1 (t~t), 1x2(ttt),. . .,lxN(tl t)]B(t)R (t)dv(t)
j=1 (3.16)

where the “new” set of augmenting states are

T T I I1
x~(.) ~~[x~ ’

1(.),x~ ’
2
(.),... xi~

N(.)) ,

~ [x~~
k( .) ,  ~~~~~~~~~ . ,x~~’~ j J

N M-q a0 C 1 ~M-q-1
f ~ -! P~ ,mn 

((1
o~~

t )
~~i

) 

~k ,m ~ o’~r ~ml,... 
~~~~~~ 

r1, r2=l 
0 0 r1 r2 2

a
q+rj

(a
r1

_J
r1+i
) 

b 

inr 
a
qFr

(o
r

or2
fl)

j,k 
q + r 1

X
q 

(a
0

) =

a
H
a
M ...q )1-q-l 

aq+j
(a

i
_a
i÷?

e XM
(O) (  ir 

0 
e ~~~~~~ (o . 31 )d~ . ~~) ,

q <M - l

0 q~~~M - 1  (3.17)

- 7 -
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Now the new augmenting state vector
i i ‘~ T 2

L
( )  ~ [ 1x ’( . )  , 

1x L ( . )  ~~~~~ ,~
N 

J
T~~~MN (3.18)

analogous to (3.16), is seen to satisfy the di fleri mmi ia] ( . (j t l a t  ion

2 2 2 2 1 N 2 ,
d x(t) = a (t) x(t)d + ~ ( t )  x( t ) s . .. + ~ y .  2x (t)~~.(t)dt (3:19)

in which MxM blocks of a
2
(.), ~2(.) and have  the ~an,e plo lerti e s as

those of a1(.), ~~~( .)  and y~(.) respectivel y with a b1 ’ck of obtained

• by setting b~~2 
= 0 in the block (3. 15) of . Ti m e above pr oceSS can

now be iterated and it is clear that this sequence will te rmni n ;~te at the

• M
th 

application - in the general case , t h i s  would  he t ime  t o ta l  number of

Jordan blocks - of }ushner  equat ions  since 0, i-= 1 ,2,. . . ,N. Col-

l e c ti n g  toge ther  the d i f f e r e n t i a l  equ a t i or ~ for  x ( . ) , ~~x (.) , . i 1  1x ( . ) ,  we

see that the dimens ion  of the r e s u l t i n g  n o n l i n e a r  f i l t e r  equals

(N ~1N H4N
2+. . . INN)~~~ ~~ 

(NM—i). f im e f i  l.t or for m (3.8) follows upon
writ Ing the innovations t e r m  in  the standard bi Ii imea r fo i  nat , wi m I cli a iso

reveals the fact that the matrices consist of upper triangular

N x M blocks. We thus see that 
~~~~~~~ 

consists of (strictly) upper
* * Ntriangular (M xM) blocks , while ~~ (t~~ ~ ~ 

and fc. } • 1  consi s t

of ~14 x M )  blocks that  are upper triangular. It is, there fore , easy to

see — if we carry out matrix mu ltiplications hlockwise - that the ;et of

matrices fAdc
’*(A

~
(t))Ii

~~;i=l ,N;!-~0,l , ) a l s o  h av e  ( M x M )  b1~~cks

all upper t r i an g u l a r .  Consequently the set

has (H x M) blocks tha t  are all strictl y upper t r i ; . ng ul ar .  f len eC , block—
w i s e  mu l t i p l i c a ti o n  shows tha t  the a s so c i at i v e  al gebr a g.im ~~i .ited by t h e m
is n i l  potent  o f order K. 

~ F . I) .
The f i l t e r  s tr u c t u r e  r e v ea l  ed in  the above L1ue& ~r cmn has ~o1ne i mi t  c r e s t —

I ug f eat u res worth n o t i n g .  We f i r s t  see that  ana l  t ’gtnis to  the  ease of
l i n e a r  si gna l m odels , the “dr i  It ” t e r m s in (3.8) do p r t S( ~ r y e  the hi l i n e a r
s t r u c t u r e  of the s igna l  m odel (2.14) and also inherit its n il putency
prope r ty ;  nevertheless  the ma t r ix  A*( .)  is t im e  v a r y ing a l t h ough the
matrix A is cons~~ nt. Secondly, the filter is bi l inear in the innovations
as well. Also observe that the state spaces of both the si gnal m odel and
the filter are (not necessarily identical) nil potent group manifolds.
This suggests that it ma y be wor thwhi le  to in v e s t i gat e  opt i ma l f i l t e r s

• under criteria that are defined on such manifolds. Such an approach  for
abe l ian  groups was fo l lowed  in [1).

4. C0IPL1TAT1 ONAL CONS I I ERA’f I ONS

Rea1i~ a tion  of the f i l t e r  (2. 16) in the fonn of block -
~ .~t ~c

is shown in f i gure 1 on the fol lowing  page . Time prac t i (-al ii poi I amire of
the b i l i n e a r  proper ty  of the abovi. f i l t e r  is that  ;~ r a J - t  mi c an .mli.g hti-

p1e:~men ta t io n  of ti le f i l t e r  is s t i l l  possible w i t h  e a s i l y available and
cheap hardwa re c o n s i s t i n g  of i n t egra to r s , suntners and multip liers.
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Hovever , a major drawback of the filter is its “curs e of dinme nsiona lity ”.
The following examp le illustrates the problem and shows one way of its
m n i t i ga t ior i . Examp le:  We now apply the a l g o r i t h m  developed In the theorem
to cons t ruc t  the opt i ma l f i l t e r  for the  case of system (2.3) with N = 3,

(~~
‘
i 0 01 [b b~ 01

N = 2 a n d A =  
~

0 a 2 0 1 ,  B . = 1 O  0 b
~I ,  1 = 1 ,2

L 0 0 a3i L~~~
o o J

The filter is round to have a dimnension of 21, h a v i n g  r equ i r ed 3
app l i c a t i o n s  of Kus i iner ’s eq u at i on s .~ We en~i~n e r a t e  be l ow the  nonzero

3 x 3 blocks of A*(t) , .çB~ ) 
N 

~3 ~~~ 
and L. rime n o ta t  ion used

is as follows: 
—

T
t’~~: i,3

th block of matrix I

P (t’~,€ 
(t) : 1~~

th elements of matrices ~(t) andi,, ij —l
[F(t)-P(t)H (t;~R(t)u(t)) respectively.

~(.): Kr6necker delta function.

and fiaally, for any n x n  matrix T and 0 ~ I ~
Matr ix  I with last i rows and columns rep laced  by zeros .

A
1’1(t) A ;  *l , j  

= B~ _ —23 , 3 - ,

A~~ ’
1
(t) = 

k=l (i ,k k A ”~~(t) •.

1 ,j =2 13;

A
4’2 ( t)  = 2 E B ~r 11

( t ) ,  A 4 ’~~(t) = 2 [A 2 N 1 ( J 3) ( t l ~~]~ j- 4,5;

A 1’ (t ) = ~ P2 ~ (t ) B~~, 1=5 ,6; A 1’3(t) = ~ P1 ~~~~~~ 
1r 5 ,6 ;

k=l ‘ k=1

A~
1’~~(t) = [A 2 

+ E 2 ( ~~.3)(t)I~ J~ i=5,6; j~4,S;

A~~ ’~~(t) [A
2 
+ 

~1 ( . ..5) (t ) l 3)~ 1=5 ,6; j - 6 ,7;

~ 
2 1

A ‘ (t) = 2 ~ P 2 k (t ) Bk ;
k-= 1

- 9 -

IIIr..L ~~ .- 

- - 
-~~~ •



F~ 
-
~~--~ — •— - — ._- ——--- 

— - - - —
~~~~~

— — --— -——--— ---- _ -r -—---t- - ____________

.——.- r__-_ - - .  
- - — --

—- ~~~‘—~~~~~~ ~~~~~ —

*7 2 2L A ‘ ( t )  = 2 1A ÷ 2 1:( j ..5) (t ) 1 33 , ~ 
= 6,7

~l ~ ~i i ’Rk ‘ Bk ; B
k Bk,~~~~~~

) k-~1 ,2

c~~~’
2 

~ (k-~1)4 ~~ l ,3 
= b (k - 2 ) . 1~

~~2,4 = 6(k-1)•l~ ; c~
2 ’6 

= b(k-2).I~ ; 
-

c
3’5 -

~~ b(k - l) .I ~ ; c~
3’7 = b(k-2) i~ ; k 1,2

L
1 ’1 - 13
In the above ii.at.rices , i-mote time ep et i t i o n  of certain block r ows

and the presence of some all zero lows. This allow s us in effect to
reduce the filter d imension from 21 to 30. This artuawnt can be extended
to  the g e m i e r a l  case , and It is not difficult to show that time dimensional-
ity can be reduced in this way from

N N - l  N f l — I

N-1 
(NM_i) to I (N-i) ( . )

1
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